Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_3 -biphenyl-3,3'-dicarboxylato)-(1,10-phenanthroline)cadmium]

Yu-E Qiu

Department of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China

Correspondence e-mail: dzyeqiu@126.com

Received 19 September 2011; accepted 12 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.075; data-to-parameter ratio = 16.4.

In the title compound, $[Cd(C_{14}H_8O_4)(C_{12}H_8N_2)]_n$, the Cd^{II} ion is seven-coordinated in a distorted pentagonal–bipyramidal coordination geometry by five O atoms from bridging biphenyl-3,3'-dicarboylate (dpda) ligands and two N atoms from a 1,10-phenanthroline (1,10-phen) ligand. In the crystal, dinuclear units with a $Cd \cdots Cd$ separation of 3.8208 (7) Å are observed. Each of these dinuclear units is bridged *via* 3,3'bpda in a chelating/chelating and bridging fashion, generating a zigzag chain along the *c* axis. Neighboring chains are further packed *via* weak π – π interactions between interchain parallel 1,10-phen rings [centroid–centroid distance = 3.5197 (9) Å] into a three-dimensional supramolecular architecture.

Related literature

For the use of biphenyldicarboxylato ligands in supramolecular chemistry, see: Furukawa *et al.* (2008); Qu (2007); Zhu (2010).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_{14}H_8O_4)(C_{12}H_8N_2) \end{bmatrix} \\ M_r = 532.81 \\ Monoclinic, C2/c \\ a = 26.1947 (17) Å \\ b = 9.7258 (5) Å \\ c = 21.2247 (14) Å \\ \beta = 127.411 (1)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.804, T_{max} = 0.887

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.075$ S = 1.044902 reflections 298 parameters $V = 4295.0 \text{ (5)} \text{ Å}^3$ Z = 8Mo K\alpha radiation $\mu = 1.05 \text{ mm}^{-1}$ T = 296 K $0.22 \times 0.16 \times 0.12 \text{ mm}$

12984 measured reflections 4902 independent reflections 3799 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

 $\begin{array}{l} \text{20 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported financially by the project of Shandong Province Higher Educational Science and Technology Program (grant No. J11LB56).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2322).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650–11661.
- Qu, Z. (2007). Chin. J. Inorg. Chem. 23, 1837–1839.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhu, B.-Y. (2010). Acta Cryst. E66, m1214.

Acta Cryst. (2011). E67, m1557 [doi:10.1107/S1600536811042085]

Poly[(#3-biphenyl-3,3'-dicarboxylato)(1,10-phenanthroline)cadmium]

Y.-E. Qiu

Comment

Polycarboxylate ligands have been widely used to construct coordination polymers due to their versatile coordination modes. The use of biphenyldicarboxylic acid and its derivatives have been reported in literature (Qu, 2007; Furukawa *et al.*, 2008; Zhu, 2010). The title coordination polymer $[Cd(C_{14}H_8O_4)(C_{12}H_8N_2)]_n$, (I), was obtained under hydrothermal conditions and herein its crystal structure is reported.

There is one Cd^{II} cation, one 3,3'-biphenyl-dicarboxylate anion (3,3'-bpda) and one 1,10-phenanthroline (1,10-phen) ligand observed in the asymmetric unit of (I). The Cd^{II} ion is seven coordinated in a distorted pentagonal bipyramidal coordination geometry by five O atoms (O1ⁱⁱ, O2ⁱ, O2ⁱⁱ, O3, O4) from bridging 3,3'-bpda with Cd—O bond lengths in the range of 2.258 (2)–2.515 (3) Å, two N atoms (N1, N2) from two 1,10-phen ligands with Cd—N bond lengths of 2.336 (3) and 2.368 (3) Å (Fig. 1). In the crystal structure of (I), dinuclear units with a Cd···Cd separation of 3.8208 (7) Å are observed. Each of these dinuclear units is bridged *via* 3,3'-bpda in a $\mu_1 \eta^1:\eta^1/\mu_2 \eta^1:\eta^2$ coordination mode into one dimensional zigzag chains. Parallel 1, 10-phen ligands are attached to the outside of the zigzag chain with centroid distances of 3.5197 (9) Å indicating weak π - π stacking interactions (Fig. 2). Neighboring chains are further packed *via* weak π - π interactions between interchain parallel 1,10-phen rings into the resulting three dimensional supramolecular architecture.

Experimental

To a 16 ml Teflon-lined stainless steel vessel was loaded 3,3'-biphenyl-dicarboxylic acid (0.0242 g, 0.1 mmol), 1,10-phenanthroline (0.0198 g, 0.1 mmol), NaOH (0.0080 g, 0.2 mmol) and Cd(NO₃)₂ × 4H₂O (0.0308 g, 0.1 mmol), then it was sealed and heated to 160 °C for 72 h. After being cooled down to room temperature at a rate of -5 °C/h, colorless block shaped crystals are obtained after filtration. Yield: 0.025 g (47% based on Cd).

Refinement

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93-0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Figures

Fig. 1. Anisotropic displacement ellipsoid plot of (I) at the 50% probability level. H atoms are represented by circles of arbitrary size. Symmetry code: (i)-x + 1, -y + 2, -z + 1; (ii)x, -y + 2, z - 1/2.

Fig. 2. The one-dimensional zigzag chain structure of (I).

Poly[(µ₃-biphenyl-3,3'-dicarboxylato)(1,10-phenanthroline)cadmium]

Crystal data $[Cd(C_{14}H_8O_4)(C_{12}H_8N_2)]$ $M_r = 532.81$ Monoclinic, C2/c Hall symbol: -C 2yc a = 26.1947 (17) Å *b* = 9.7258 (5) Å *c* = 21.2247 (14) Å $\beta = 127.411 \ (1)^{\circ}$ $V = 4295.0 (5) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer	4902 independent reflections
Radiation source: fine-focus sealed tube	3799 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -33 \rightarrow 34$
$T_{\min} = 0.804, T_{\max} = 0.887$	$k = -12 \rightarrow 12$
12984 measured reflections	<i>l</i> = −22→27

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.075$ S = 1.044902 reflections 298 parameters 20 restraints

F(000) = 2128 $D_{\rm x} = 1.648 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4252 reflections $\theta = 2.3 - 26.6^{\circ}$ $\mu = 1.05 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.22\times0.16\times0.12~mm$

)

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0264P)^2 + 5.2631P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.576743 (12)	0.54986 (2)	0.356955 (13)	0.03981 (9)
O4	0.58387 (13)	0.7247 (2)	0.43196 (14)	0.0562 (6)
O2	0.53633 (12)	1.4416 (2)	0.71597 (14)	0.0510 (6)
N1	0.55605 (13)	0.3153 (3)	0.35361 (14)	0.0391 (6)
N2	0.66457 (14)	0.4227 (3)	0.38232 (16)	0.0462 (7)
01	0.60664 (16)	1.2882 (2)	0.80000 (16)	0.0743 (9)
03	0.63552 (15)	0.5452 (3)	0.50456 (15)	0.0715 (8)
C8	0.63079 (16)	0.9542 (3)	0.62890 (18)	0.0419 (7)
C22	0.7643 (2)	0.2526 (5)	0.4166 (2)	0.0690 (11)
H22	0.7980	0.1969	0.4287	0.083*
C15	0.50313 (17)	0.2623 (4)	0.33813 (19)	0.0493 (8)
H15	0.4707	0.3218	0.3267	0.059*
C9	0.61051 (15)	0.8739 (3)	0.56284 (18)	0.0384 (7)
H9	0.5779	0.9068	0.5125	0.046*
C6	0.60253 (15)	1.1531 (3)	0.67908 (18)	0.0378 (7)
H6	0.6193	1.1044	0.7256	0.045*
C25	0.66020 (16)	0.2840 (3)	0.38477 (18)	0.0429 (8)
C7	0.57685 (16)	1.2827 (3)	0.66989 (18)	0.0398 (7)
C5	0.60382 (15)	1.0940 (3)	0.62004 (18)	0.0372 (7)
C21	0.70931 (19)	0.1938 (4)	0.4015 (2)	0.0540 (9)
C26	0.60325 (16)	0.2285 (3)	0.37016 (17)	0.0410 (7)
C24	0.71735 (19)	0.4739 (4)	0.3960 (2)	0.0607 (10)
H24	0.7207	0.5686	0.3937	0.073*
C14	0.61750 (17)	0.6662 (3)	0.4976 (2)	0.0462 (8)
C10	0.63737 (18)	0.7474 (4)	0.5699 (2)	0.0510 (9)
C23	0.7685 (2)	0.3906 (5)	0.4137 (2)	0.0713 (12)
H23	0.8049	0.4303	0.4234	0.086*
C2	0.5534 (2)	1.3575 (4)	0.6021 (2)	0.0577 (10)
H2	0.5363	1.4447	0.5957	0.069*
C1	0.57283 (18)	1.3394 (3)	0.7327 (2)	0.0475 (8)
C3	0.5556 (2)	1.3028 (4)	0.5438 (2)	0.0668 (12)
H3	0.5407	1.3539	0.4986	0.080*
C17	0.5397 (2)	0.0336 (4)	0.3544 (2)	0.0605 (11)

H17	0.5336	-0.0606	0.3544	0.073*
C4	0.57985 (18)	1.1717 (4)	0.5526 (2)	0.0513 (9)
H4	0.5801	1.1351	0.5123	0.062*
C16	0.4936 (2)	0.1214 (4)	0.3381 (2)	0.0600 (10)
H16	0.4555	0.0885	0.3270	0.072*
C19	0.6478 (2)	-0.0034 (4)	0.3886 (2)	0.0646 (11)
H19	0.6439	-0.0982	0.3901	0.078*
C11	0.6841 (3)	0.6979 (5)	0.6435 (3)	0.0999 (17)
H11	0.7014	0.6111	0.6491	0.120*
C18	0.59693 (19)	0.0839 (3)	0.37142 (19)	0.0505 (9)
C13	0.6786 (2)	0.9026 (5)	0.7021 (2)	0.0867 (16)
H13	0.6926	0.9536	0.7470	0.104*
C12	0.7065 (3)	0.7767 (6)	0.7108 (3)	0.118 (2)
H12	0.7399	0.7446	0.7610	0.142*
C20	0.7008 (2)	0.0496 (4)	0.4026 (2)	0.0659 (11)
H20	0.7332	-0.0095	0.4135	0.079*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cd1	0.05906 (17)	0.02976 (12)	0.03860 (14)	-0.00476 (11)	0.03382 (12)	-0.00224 (10)
O4	0.0822 (18)	0.0413 (13)	0.0422 (14)	0.0027 (13)	0.0362 (14)	-0.0058 (11)
02	0.0564 (15)	0.0473 (13)	0.0569 (15)	0.0043 (12)	0.0383 (13)	-0.0115 (11)
N1	0.0439 (15)	0.0375 (14)	0.0341 (14)	-0.0049 (12)	0.0227 (12)	0.0023 (11)
N2	0.0523 (17)	0.0492 (17)	0.0444 (16)	-0.0107 (14)	0.0332 (14)	-0.0059 (13)
01	0.145 (3)	0.0429 (14)	0.0609 (17)	0.0272 (16)	0.0757 (19)	0.0103 (12)
03	0.107 (2)	0.0565 (13)	0.0489 (9)	0.0251 (13)	0.0461 (13)	0.0007 (11)
C8	0.0485 (19)	0.0465 (18)	0.0372 (17)	0.0058 (16)	0.0295 (15)	-0.0008 (15)
C22	0.066 (3)	0.094 (3)	0.058 (2)	0.010 (3)	0.043 (2)	-0.002 (2)
C15	0.055 (2)	0.049 (2)	0.046 (2)	-0.0103 (17)	0.0320 (18)	0.0016 (16)
C9	0.0429 (18)	0.0410 (17)	0.0334 (16)	0.0023 (14)	0.0243 (14)	-0.0009 (13)
C6	0.0468 (18)	0.0352 (15)	0.0384 (17)	-0.0041 (14)	0.0295 (15)	-0.0034 (13)
C25	0.052 (2)	0.0461 (19)	0.0315 (17)	-0.0015 (16)	0.0260 (16)	-0.0051 (14)
C7	0.0506 (19)	0.0361 (16)	0.0413 (17)	-0.0006 (14)	0.0324 (16)	-0.0045 (14)
C5	0.0402 (17)	0.0390 (16)	0.0388 (17)	-0.0025 (13)	0.0273 (15)	-0.0064 (13)
C21	0.061 (2)	0.067 (2)	0.0387 (19)	0.0051 (19)	0.0325 (18)	-0.0048 (17)
C26	0.054 (2)	0.0372 (17)	0.0282 (16)	-0.0054 (15)	0.0231 (15)	-0.0034 (13)
C24	0.065 (3)	0.066 (3)	0.061 (2)	-0.016 (2)	0.044 (2)	-0.0065 (19)
C14	0.061 (2)	0.0433 (14)	0.0453 (19)	0.0021 (16)	0.0380 (18)	-0.0038 (15)
C10	0.068 (2)	0.0494 (19)	0.0386 (18)	0.0156 (18)	0.0343 (18)	0.0033 (15)
C23	0.056 (3)	0.103 (4)	0.070 (3)	-0.008 (2)	0.046 (2)	-0.003 (3)
C2	0.086 (3)	0.0426 (19)	0.056 (2)	0.0179 (19)	0.049 (2)	0.0063 (17)
C1	0.074 (2)	0.0332 (17)	0.053 (2)	-0.0027 (17)	0.048 (2)	-0.0059 (16)
C3	0.107 (3)	0.057 (2)	0.053 (2)	0.024 (2)	0.057 (2)	0.0156 (18)
C17	0.083 (3)	0.039 (2)	0.048 (2)	-0.019 (2)	0.034 (2)	-0.0024 (16)
C4	0.071 (2)	0.053 (2)	0.0431 (19)	0.0113 (18)	0.0417 (19)	-0.0005 (16)
C16	0.071 (3)	0.055 (2)	0.050 (2)	-0.024 (2)	0.035 (2)	-0.0018 (18)
C19	0.093 (3)	0.0386 (19)	0.055 (2)	0.006 (2)	0.041 (2)	-0.0048 (17)

C11 C18 C13 C12 C20	0.136 (4) 0.072 (3) 0.112 (4) 0.150 (4) 0.088 (3)	0.084 (3) 0.0370 (17) 0.089 (3) 0.109 (3) 0.056 (2)	0.060 (3) 0.0343 (18) 0.037 (2) 0.056 (3) 0.054 (2)	0.060 (3) -0.0015 (17) 0.051 (3) 0.073 (3) 0.023 (2)	0.050 (3) 0.0277 (18) 0.034 (2) 0.042 (3) 0.043 (2)	0.004 (2) -0.0024 (14) -0.002 (2) 0.006 (2) -0.0011 (19)
Geometric param	neters (Å, °)					
Cd1—O4		2.258 (2)	С6—Н6	5	0.930	0
Cd1—N1		2.336 (3)	C25—C	221	1.413	(5)
Cd1—N2		2.368 (3)	C25—C	226	1.432	(4)
Cd1—O2 ⁱ		2.368 (2)	C7—C2	2	1.380	(4)
Cd1—O1 ⁱⁱ		2.388 (2)	C7—C1		1.505	(4)
Cd1—O2 ⁱⁱ		2.497 (2)	C5—C4	ŀ	1.387	(4)
Cd1—O3		2.515 (3)	C21—C	220	1.423	(5)
Cd1-C14		2.731 (3)	C26—C	218	1.419	(4)
O4—C14		1.245 (4)	C24—C	223	1.406	(6)
O2—C1		1.271 (4)	C24—H	124	0.930	0
O2—Cd1 ⁱ		2.368 (2)	C14—C	210	1.509	(4)
O2—Cd1 ⁱⁱⁱ		2.497 (2)	C10—C	211	1.360	(5)
N1—C15		1.320 (4)	С23—Н	123	0.930	0
N1—C26		1.355 (4)	C2—C3	3	1.378	(5)
N2-C24		1.325 (4)	С2—Н2	2	0.930	0
N2—C25		1.358 (4)	C3—C4	ł	1.386	(5)
O1—C1		1.238 (4)	С3—Н3	3	0.930	0
O1—Cd1 ⁱⁱⁱ		2.388 (2)	C17—C	216	1.341	(6)
O3—C14		1.243 (4)	C17—C	218	1.401	(6)
C8—C13		1.367 (5)	С17—Н	I17	0.930	0
С8—С9		1.397 (4)	C4—H4	1	0.930	0
C8—C5		1.491 (4)	C16—H	116	0.930	0
C22—C23		1.352 (6)	С19—С	220	1.336	(6)
C22—C21		1.393 (5)	С19—С	218	1.428	(6)
С22—Н22		0.9300	C19—H	119	0.930	0
C15—C16		1.393 (5)	C11—C	212	1.398	(6)
C15—H15		0.9300	С11—Н	[11	0.930	0
C9—C10		1.380 (4)	C13—C	212	1.380	(6)
С9—Н9		0.9300	C13—H	113	0.930	0
C6-C7		1.385 (4)	C12—H	112	0.930	0
C6—C3		1.398 (4)	C20—F	120	0.930	(2)
04—Cdl—Nl		132.46 (9)	C4—C5	—C6	11/.3	(3)
V4— $Cd1$ — $N2$		125.46(10)	C4—C3	$\sim -C^{\circ}$	120.7	(3)
		70.87 (9)	C0—C3	$-c_{0}$	122.0	(3)
$04-02^{i}$		00.24 (9) 80.75 (0)	C22—C	21 - C23	11/.3	(4)
NI-Cal-O2		00.73 (9)	022-0	21 - C20	123.4	(4)
N2—Cd1—O2 ⁱ		145.46 (8)	025-0	.21-020	119.3	(4)
$O4$ — $Cd1$ — $O1^{11}$		87.04 (9)	N1—C2	26—C18	121.6	(3)
N1—Cd1—O1 ⁱⁱ		140.34 (9)	N1—C2	26—C25	119.2	(3)

N2—Cd1—O1 ⁱⁱ	83.53 (10)	C18—C26—C25	119.2 (3)
O2 ⁱ —Cd1—O1 ⁱⁱ	108.10 (10)	N2—C24—C23	122.6 (4)
O4—Cd1—O2 ⁱⁱ	127.82 (8)	N2—C24—H24	118.7
N1—Cd1—O2 ⁱⁱ	94.27 (8)	C23—C24—H24	118.7
$N2-Cd1-O2^{ii}$	86.32 (8)	O3—C14—O4	121.7 (3)
O2 ⁱ —Cd1—O2 ⁱⁱ	76.36 (8)	O3—C14—C10	120.2 (3)
01^{ii} —Cd1— 02^{ii}	53.28 (8)	O4—C14—C10	118.1 (3)
04—Cd1—O3	53.83 (8)	O3—C14—Cd1	66.77 (18)
N1—Cd1—O3	88.58 (8)	O4—C14—Cd1	54.92 (16)
N2—Cd1—O3	86.12 (9)	C10-C14-Cd1	172.8 (2)
$O2^{i}$ —Cd1—O3	113.01 (9)	C11—C10—C9	118.9 (3)
O1 ⁱⁱ —Cd1—O3	120.11 (10)	C11—C10—C14	119.8 (3)
02^{ii} —Cd1—O3	170.56 (9)	C9—C10—C14	121.2 (3)
04-Cd1-C14	26.82 (9)	$C^{22} - C^{23} - C^{24}$	1196(4)
N1 - Cd1 - C14	111 54 (9)	C22—C23—H23	120.2
N^2 —Cd1—C14	106 69 (10)	C24—C23—H23	120.2
Ω^2^i —Cd1—C14	101.72 (9)	C3-C2-C7	119.8 (3)
$O1^{ii}$ —Cd1—C14	104.46 (9)	C3—C2—H2	120.1
02^{ii} —Cd1—C14	153.63 (9)	C7—C2—H2	120.1
O3—Cd1—C14	27.01 (9)	O1—C1—O2	121.8 (3)
C14—O4—Cd1	98.26 (19)	O1—C1—C7	119.2 (3)
$C1 - O2 - Cd1^{i}$	129.8 (2)	O2—C1—C7	119.0 (3)
C1—O2—Cd1 ⁱⁱⁱ	89.51 (19)	C2—C3—C4	120.0 (3)
$Cd1^{i}$ — $O2$ — $Cd1^{iii}$	103.50 (8)	С2—С3—Н3	120.0
C15—N1—C26	118.5 (3)	С4—С3—Н3	120.0
C15—N1—Cd1	125.3 (2)	C16—C17—C18	120.0 (3)
C26—N1—Cd1	116.2 (2)	C16—C17—H17	120.0
C24—N2—C25	117.8 (3)	C18—C17—H17	120.0
C24—N2—Cd1	126.5 (3)	C3—C4—C5	121.5 (3)
C25—N2—Cd1	115.8 (2)	С3—С4—Н4	119.2
C1—O1—Cd1 ⁱⁱⁱ	95.4 (2)	C5—C4—H4	119.2
C14—O3—Cd1	86.2 (2)	C17—C16—C15	119.5 (4)
C13—C8—C9	117.5 (3)	С17—С16—Н16	120.2
C13—C8—C5	121.0 (3)	C15—C16—H16	120.2
C9—C8—C5	121.4 (3)	C20-C19-C18	120.7 (4)
C23—C22—C21	119.9 (4)	С20—С19—Н19	119.7
C23—C22—H22	120.1	C18—C19—H19	119.7
C21—C22—H22	120.1	C10-C11-C12	120.4 (4)
N1-C15-C16	123.1 (4)	C10-C11-H11	119.8
N1—C15—H15	118.5	C12—C11—H11	119.8
C16—C15—H15	118.5	C17—C18—C26	117.4 (4)
С10—С9—С8	122.1 (3)	C17—C18—C19	123.1 (4)
С10—С9—Н9	118.9	C26—C18—C19	119.5 (4)
С8—С9—Н9	118.9	C8—C13—C12	121.6 (4)
C7—C6—C5	121.5 (3)	С8—С13—Н13	119.2

С7—С6—Н6	119.3	C12—C13—H13	119.2
С5—С6—Н6	119.3	C13—C12—C11	119.3 (4)
N2—C25—C21	122.8 (3)	C13—C12—H12	120.3
N2—C25—C26	117.9 (3)	C11—C12—H12	120.3
C21—C25—C26	119.4 (3)	C19—C20—C21	121.9 (4)
C2—C7—C6	119.8 (3)	С19—С20—Н20	119.0
C2—C7—C1	120.3 (3)	C21—C20—H20	119.0
C6—C7—C1	119.9 (3)		
N1-Cd1-O4-C14	45.0 (3)	Cd1—N2—C24—C23	177.4 (3)
N2-Cd1-O4-C14	-51.1 (2)	Cd1O3C14O4	0.5 (4)
O2 ⁱ —Cd1—O4—C14	120.7 (2)	Cd1—O3—C14—C10	-178.2 (3)
O1 ⁱⁱ —Cd1—O4—C14	-131.0 (2)	Cd1—O4—C14—O3	-0.5 (4)
O2 ⁱⁱ —Cd1—O4—C14	-168.08 (19)	Cd1O4C14C10	178.2 (3)
O3—Cd1—O4—C14	0.3 (2)	O4—Cd1—C14—O3	179.5 (4)
O4—Cd1—N1—C15	60.5 (3)	N1—Cd1—C14—O3	33.6 (3)
N2—Cd1—N1—C15	-178.5 (3)	N2—Cd1—C14—O3	-41.9 (2)
O2 ⁱ —Cd1—N1—C15	-18.5 (2)	O2 ⁱ —Cd1—C14—O3	118.2 (2)
O1 ⁱⁱ —Cd1—N1—C15	-125.7 (3)	O1 ⁱⁱ —Cd1—C14—O3	-129.4 (2)
O2 ⁱⁱ —Cd1—N1—C15	-93.9 (2)	O2 ⁱⁱ —Cd1—C14—O3	-158.9 (2)
O3—Cd1—N1—C15	95.1 (2)	N1—Cd1—C14—O4	-145.9 (2)
O4—Cd1—N1—C26	-118.5 (2)	N2—Cd1—C14—O4	138.5 (2)
N2-Cd1-N1-C26	2.46 (19)	O2 ⁱ —Cd1—C14—O4	-61.3 (2)
O2 ⁱ —Cd1—N1—C26	162.5 (2)	O1 ⁱⁱ —Cd1—C14—O4	51.1 (2)
O1 ⁱⁱ —Cd1—N1—C26	55.2 (3)	O2 ⁱⁱ —Cd1—C14—O4	21.6 (3)
O2 ⁱⁱ —Cd1—N1—C26	87.1 (2)	O3—Cd1—C14—O4	-179.5 (4)
O3—Cd1—N1—C26	-83.9 (2)	O4—Cd1—C14—C10	-12.9 (19)
O4—Cd1—N2—C24	-51.3 (3)	N1-Cd1-C14-C10	-158.8 (19)
N1—Cd1—N2—C24	179.7 (3)	N2-Cd1-C14-C10	126 (2)
O2 ⁱ —Cd1—N2—C24	143.2 (3)	O2 ⁱ —Cd1—C14—C10	-74 (2)
O1 ⁱⁱ —Cd1—N2—C24	30.4 (3)	O1 ⁱⁱ —Cd1—C14—C10	38 (2)
O2 ⁱⁱ —Cd1—N2—C24	83.9 (3)	O2 ⁱⁱ —Cd1—C14—C10	9(2)
O3—Cd1—N2—C24	-90.5 (3)	O3—Cd1—C14—C10	168 (2)
O4—Cd1—N2—C25	127.0 (2)	C8—C9—C10—C11	1.4 (6)
N1—Cd1—N2—C25	-2.0 (2)	C8—C9—C10—C14	-176.3 (3)
O2 ⁱ —Cd1—N2—C25	-38.5 (3)	O3—C14—C10—C11	12.1 (6)
O1 ⁱⁱ —Cd1—N2—C25	-151.3 (2)	O4—C14—C10—C11	-166.7 (4)
O2 ⁱⁱ —Cd1—N2—C25	-97.8 (2)	O3—C14—C10—C9	-170.2 (4)
O3—Cd1—N2—C25	87.8 (2)	O4—C14—C10—C9	11.0 (5)
O4—Cd1—O3—C14	-0.3 (2)	C21—C22—C23—C24	0.5 (6)
N1-Cd1-O3-C14	-149.0 (2)	N2—C24—C23—C22	0.5 (6)
N2-Cd1-O3-C14	140.1 (2)	C6—C7—C2—C3	0.2 (6)
O2 ⁱ —Cd1—O3—C14	-69.7 (2)	C1—C7—C2—C3	-178.0 (4)
O1 ⁱⁱ —Cd1—O3—C14	59.9 (3)	Cd1 ⁱⁱⁱ —O1—C1—O2	-2.7 (4)
O2 ⁱⁱ —Cd1—O3—C14	103.3 (5)	Cd1 ⁱⁱⁱ —O1—C1—C7	174.9 (3)
C26—N1—C15—C16	0.1 (5)	Cd1 ⁱ —O2—C1—O1	-104.7 (4)

Cd1—N1—C15—C16	-178.9 (2)	Cd1 ⁱⁱⁱ —O2—C1—O1	2.6 (4)
C13—C8—C9—C10	-0.4 (5)	Cd1 ⁱ —O2—C1—C7	77.7 (4)
C5—C8—C9—C10	176.5 (3)	Cd1 ⁱⁱⁱ —O2—C1—C7	-175.0 (3)
C24—N2—C25—C21	0.3 (5)	C2-C7-C1-O1	-163.1 (4)
Cd1—N2—C25—C21	-178.1 (2)	C6—C7—C1—O1	18.7 (5)
C24—N2—C25—C26	179.9 (3)	C2—C7—C1—O2	14.6 (5)
Cd1—N2—C25—C26	1.5 (3)	C6—C7—C1—O2	-163.6 (3)
C5—C6—C7—C2	-1.8 (5)	C7—C2—C3—C4	1.4 (6)
C5—C6—C7—C1	176.4 (3)	C2—C3—C4—C5	-1.5 (6)
C7—C6—C5—C4	1.6 (5)	C6—C5—C4—C3	0.0 (5)
C7—C6—C5—C8	-179.4 (3)	C8—C5—C4—C3	-178.9 (4)
C13—C8—C5—C4	149.9 (4)	C18—C17—C16—C15	0.2 (5)
C9—C8—C5—C4	-26.9 (5)	N1-C15-C16-C17	-0.1 (5)
C13—C8—C5—C6	-29.0 (5)	C9—C10—C11—C12	-2.7 (8)
C9—C8—C5—C6	154.2 (3)	C14—C10—C11—C12	175.1 (5)
C23—C22—C21—C25	-1.0 (5)	C16-C17-C18-C26	-0.3 (5)
C23—C22—C21—C20	179.4 (4)	C16-C17-C18-C19	-179.5 (3)
N2—C25—C21—C22	0.6 (5)	N1-C26-C18-C17	0.4 (5)
C26—C25—C21—C22	-179.0 (3)	C25-C26-C18-C17	-178.1 (3)
N2-C25-C21-C20	-179.8 (3)	N1-C26-C18-C19	179.6 (3)
C26—C25—C21—C20	0.6 (5)	C25—C26—C18—C19	1.1 (5)
C15—N1—C26—C18	-0.3 (4)	C20-C19-C18-C17	178.4 (4)
Cd1—N1—C26—C18	178.9 (2)	C20-C19-C18-C26	-0.7 (5)
C15—N1—C26—C25	178.2 (3)	C9—C8—C13—C12	0.7 (7)
Cd1—N1—C26—C25	-2.7 (3)	C5-C8-C13-C12	-176.2 (5)
N2-C25-C26-N1	0.8 (4)	C8—C13—C12—C11	-2.0 (10)
C21-C25-C26-N1	-179.6 (3)	C10-C11-C12-C13	3.0 (10)
N2-C25-C26-C18	179.3 (3)	C18—C19—C20—C21	0.3 (6)
C21—C25—C26—C18	-1.1 (4)	C22-C21-C20-C19	179.3 (4)
C25—N2—C24—C23	-0.9 (5)	C25—C21—C20—C19	-0.2 (6)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, -y+2, z-1/2; (iii) x, -y+2, z+1/2.

Fig. 1

